Wednesday - April 22, 2015

Bayer MaterialScience and partners optimize polyurethane systems for automotive clearcoats

Fast curing, brilliant look

Thermoactivated hardener enables efficient coating of plastic add-on parts

Nuremberg, April 22, 2015 – Bayer MaterialScience has developed a unique technology called BLULOGIQ for coating plastic parts on automobiles at low temperatures. Bumpers, mirror housings, spoilers, tailgates and roof modules are finished with their outer clearcoat at energy- and cost-efficient temperatures below 100 °C. Although curing is as much as 30 percent faster than with proven two-component polyurethane coatings, appearance is still very good. In the medium term, this technology will offer the possibility of coating plastic, composite and metal automotive parts together for the first time. BLULOGIQ is an excellent example of customer-oriented developments, true to the slogan „Inventing for you“ of the Coatings, Adhesives, Specialties Business Unit of Bayer MaterialScience.

A new car needs to look good and convey a sense of aesthetics and value. The clearcoat determines the external appearance. It is the last layer to be applied to the body, and gives the vehicle its high-gloss finish. Two-component coatings formulated with polyurethane (PU) raw materials from Bayer MaterialScience have proved invaluable for this. Along with their outstanding appearance, they also boast excellent resistance to weathering, chemicals and impact.

Although many bodywork parts are still made from sheet steel, plastics are increasingly used for add-on automotive parts. They are one way of reducing fuel consumption and CO2 emissions. To ensure that the coated plastic parts look just as good as the coated metal, they are coated in exactly the same way, but at a lower temperature.

Previously – focus on speed or brilliance
When using conventional coating technology, plastic parts generally need several days to dry completely after being coated with two-component polyurethane coatings. This leads to delays in further processing and requires special measures for storing the coated parts.

Additives for accelerated curing have therefore been used for some time now. However, their use means that crosslinking begins immediately upon application. As a result, the coating cannot flow freely and does not achieve an optimal appearance. All previous attempts to satisfy the need for rapid curing without compromising on appearance have failed.

First film formation, then curing
This problem has now been solved with the new BLULOGIQ technology. At its heart is a thermolatent hardener from Bayer MaterialScience that makes it possible to separate film formation and curing. “The coating initially flows smoothly on the substrate and forms an even film,” said Dr. Jan Weikard, Head of Application Technology in the Automotive/Transportation segment of the Coatings, Adhesives and Specialties Business Unit at Bayer MaterialScience. “Not until the temperature is subsequently raised is the hardener present in the coating activated. This ensures the coating dries rapidly on the plastic substrate.”

No significant changes to the coating formulation are required. Thermolatent two-component PU systems can therefore be used for coating plastic add-on parts in series production without any problems. Even in cases where the faster drying is not such an advantage, the new development still enables the parts to be processed with greater ease and speed after baking.

Promising prospects for energy-efficient cars
Constructing lightweight vehicles continues to be of great interest to the automotive industry. “Our technology opens up new and very promising opportunities for introducing lightweight construction concepts in mass production,” said Zivko Andelkovski, Head of Industrial Marketing Automotive at Bayer MaterialScience’s Coatings, Adhesives and Specialties Business Unit. “Low-temperature clearcoat technology is the first milestone to achieving this. Further development of our raw materials in the fields of primer surfacer technology, underbody protection, seam sealing and adhesive bonding will make it possible in the medium term to complete the entire process at low temperatures and lead to a breakthrough for lightweight mass-produced vehicles.”

Compared with the best current process, this technology can reduce energy consumption by 15 percent and CO2 emissions by 10 percent. This is the result of a joint study by Bayer MaterialScience, an automotive manufacturer, a coating formulator and a company specializing in sustainability certification.

Thanks to the lower curing temperature, it will be possible in the medium term to coat plastics, composites and metals together. “This is a first for in-line coating,” explained Andelkovski. The market launch of Desmodur® blulogiq is planned on occasion of the European Coatings Show.

The low curing temperature also offers future opportunities for using alternative energy sources. For example, district heating could be used to heat the ovens for drying the coatings. Another possibility would be to use cogeneration or waste heat from other manufacturing processes to produce the energy required.

About Bayer MaterialScience:
With 2014 sales of EUR 11.7 billion, Bayer MaterialScience is among the world’s largest polymer companies. Business activities are focused on the manufacture of high-tech polymer materials and the development of innovative solutions for products used in many areas of daily life. The main segments served are the automotive, electrical and electronics, construction and the sports and leisure industries. At the end of 2014 Bayer MaterialScience had 30 production sites and employed approximately 14,200 people around the globe. Bayer MaterialScience is a Bayer Group company.

This news release is available for download from the Bayer MaterialScience press server at

Find more information at and

Forward-Looking Statements
This news release may contain forward-looking statements based on current assumptions and forecasts made by Bayer Group or subgroup management. Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. These factors include those discussed in Bayer’s public reports, which are available on the Bayer website at The company assumes no liability whatsoever to update these forward-looking statements or to conform them to future events or developments.